cotengra.hyperoptimizers.hyper_cmaes

Hyper parameter optimization using cmaes, as implemented by

https://github.com/CyberAgentAILab/cmaes.

Classes

LCBOptimizer

Lower Confidence Bound Optimizer.

Param

A basic parameter class for mapping various types of parameters to

ParamFloat

A basic parameter class for mapping various types of parameters to

ParamFloatExp

An exponentially distributed (i.e. uniform in logspace) parameter.

ParamInt

A basic parameter class for mapping various types of parameters to

ParamString

A basic parameter class for mapping various types of parameters to

ParamBool

A basic parameter class for mapping various types of parameters to

HyperCMAESSampler

Functions

cmaes_init_optimizers(self, methods, space[, sigma, ...])

cmaes_get_setting(self)

cmaes_report_result(self, settings, trial, score)

Module Contents

class cotengra.hyperoptimizers.hyper_cmaes.LCBOptimizer(options, exploration=1.0, temperature=1.0, seed=None)[source]

Lower Confidence Bound Optimizer.

This optimizer selects the option with the lowest lower confidence bound.

options
index
nopt
counts
values
total = 0
exploration = 1.0
temperature = 1.0
rng
ask()[source]

Suggest an option based on the lower confidence bound.

tell(option, score)[source]
class cotengra.hyperoptimizers.hyper_cmaes.Param(name)[source]

A basic parameter class for mapping various types of parameters to and from uniform optimization space of [-1, 1].

name
size = 1
abstract get_raw_bounds()[source]
abstract convert_raw(vi)[source]
class cotengra.hyperoptimizers.hyper_cmaes.ParamFloat(min, max, **kwargs)[source]

Bases: Param

A basic parameter class for mapping various types of parameters to and from uniform optimization space of [-1, 1].

min
max
convert_raw(x)[source]
class cotengra.hyperoptimizers.hyper_cmaes.ParamFloatExp(min, max, power=0.5, **kwargs)[source]

Bases: ParamFloat

An exponentially distributed (i.e. uniform in logspace) parameter.

power = 0.5
convert_raw(x)[source]
class cotengra.hyperoptimizers.hyper_cmaes.ParamInt(min, max, **kwargs)[source]

Bases: Param

A basic parameter class for mapping various types of parameters to and from uniform optimization space of [-1, 1].

min
max
convert_raw(x)[source]
class cotengra.hyperoptimizers.hyper_cmaes.ParamString(options, name)[source]

Bases: Param

A basic parameter class for mapping various types of parameters to and from uniform optimization space of [-1, 1].

options
size
name
convert_raw(x)[source]
class cotengra.hyperoptimizers.hyper_cmaes.ParamBool(name)[source]

Bases: Param

A basic parameter class for mapping various types of parameters to and from uniform optimization space of [-1, 1].

size = 2
name
convert_raw(x)[source]
class cotengra.hyperoptimizers.hyper_cmaes.HyperCMAESSampler(space, sigma=1.0, lr_adapt=True, separable=False, exponential_param_power=None, **kwargs)[source]
params = []
opt
_trial_counter = 0
_trial_store
_batch = []
ask()[source]
tell(trial_number, value)[source]
cotengra.hyperoptimizers.hyper_cmaes.cmaes_init_optimizers(self, methods, space, sigma=1.0, lr_adapt=True, method_exploration=1.0, method_temperature=1.0, exponential_param_power=None, **cmaes_opts)[source]
cotengra.hyperoptimizers.hyper_cmaes.cmaes_get_setting(self)[source]
cotengra.hyperoptimizers.hyper_cmaes.cmaes_report_result(self, settings, trial, score)[source]